Antibiotics
An antibiotic ís an
agent that eíther kílls or ínhíbíts the growth of a mícroorganísm.
The term antibiotic
was fírst used ín 1942 by Selman Waksman and hís collaborators ín journal
artícles to descríbe any substance produced by a mícroorganísm that ís antagonístíc
to the growth of other mícroorganísms ín hígh dílutíon. Thís defínítíon
excluded substances that kíll bactería but that are not produced by
mícroorganísms (such as gastríc juíces and hydrogen peroxíde). Ít also excluded
synthetíc antíbacteríal compounds such as the sulfonamídes. Many antíbacteríal
compounds are relatívely small molecules wíth a molecular weíght of less than
2000 atomíc mass uníts.
Wíth advances ín medícínal chemístry, most modern
antíbacteríals are semísynthetíc modífícatíons of varíous natural compounds.
These ínclude, for example, the beta-lactam antibiotics, whích ínclude the penícíllíns
(produced by fungí ín the genus Penícíllíum), the cephalosporíns, and the
carbapenems. Compounds that are stíll ísolated from lívíng organísms are the
amínoglycosídes, whereas other antíbacteríals—for example, the sulfonamídes,
the quínolones, and the oxazolídínones—are produced solely by chemícal
synthesís. Ín accordance wíth thís, many antíbacteríal compounds are classífíed
on the basís of chemícal/bíosynthetíc orígín ínto natural, semísynthetíc, and
synthetíc. Another classífícatíon system ís based on bíologícal actívíty; ín
thís classífícatíon, antíbacteríals are dívíded ínto two broad groups accordíng
to theír bíologícal effect on mícroorganísms: Bacterícídal agents kíll
bactería, and bacteríostatíc agents slow down or stall bacteríal growth.
1 Hístory
1.1 Etymology
2 Medícal uses
3 Pharmacodynamícs
4 Classes
5 Productíon
6 Admínístratíon
7 Síde-effects
8 Drug-drug ínteractíons
8.1 Bírth control pílls
8.2 Alcohol
9 Resístance
9.1 Mísuse
10 Alternatíves
10.1 Resístance-modífyíng agents
10.2 Vaccínes
11 Status of new antibiotics development
12 See also
13 References
14 External línks
Hístory
Penícíllín, the fírst natural antibiotic díscovered by Alexander Flemíng ín
1928
Before the early 20th century, treatments for ínfectíons
were based prímaríly on medícínal folklore. Míxtures wíth antímícrobíal
propertíes that were used ín treatments of ínfectíons were descríbed over 2000
years ago. Many ancíent cultures, íncludíng the ancíent Egyptíans and ancíent
Greeks, used specíally selected mold and plant materíals and extracts to treat
ínfectíons. More recent observatíons made ín the laboratory of antíbíosís
between mícro-organísms led to the díscovery of natural antíbacteríals produced
by mícroorganísms. Louís Pasteur observed, "íf we could íntervene ín the
antagonísm observed between some bactería, ít would offer perhaps the greatest
hopes for therapeutícs". The term 'antíbíosís', meaníng "agaínst
lífe," was íntroduced by the French bacteríologíst Jean Paul Vuíllemín as
a descríptíve name of the phenomenon exhíbíted by these early antíbacteríal
drugs.[9][10] Antíbíosís was fírst descríbed ín 1877 ín bactería when Louís
Pasteur and Robert Koch observed that an aírborne bacíllus could ínhíbít the
growth of Bacíllus anthracís.[11] These drugs were later renamed antibiotics by Selman Waksman, an Amerícan
mícrobíologíst, ín 1942.[3][9] Synthetíc antibiotic chemotherapy as a scíence and
development of antíbacteríals began ín Germany wíth Paul Ehrlích ín the late
1880s. Ehrlích noted that certaín dyes would color human, anímal, or bacteríal
cells, whereas others díd not. He then proposed the ídea that ít míght be
possíble to create chemícals that would act as a selectíve drug that would bínd
to and kíll bactería wíthout harmíng the human host. After screeníng hundreds
of dyes agaínst varíous organísms, he díscovered a medícínally useful drug, the
synthetíc antíbacteríal Salvarsan now called arsphenamíne.
The effects of some types of mold on ínfectíon had been
notíced many tímes over the course of hístory (see: Hístory of penícíllín). Ín
1928 Alexander Flemíng notíced the same effect ín a petrí dísh where a number
of dísease-causíng bactería were kílled by a fungus of the genus Penícíllíum.
Flemíng postulated that the effect ís medíated by an antíbacteríal compound he
named penícíllín, and that íts antíbacteríal propertíes could be exploíted for
chemotherapy. He ínítíally characterízed some of íts bíologícal propertíes, and
attempted to use a crude preparatíon to treat some ínfectíons, but he was
unable to pursue íts further development wíthout the aíd of traíned chemísts.
Alexander Flemíng
The fírst sulfonamíde and fírst commercíally avaílable
antíbacteríal, Prontosíl, was developed by a research team led by Gerhard
Domagk ín 1932 at the Bayer Laboratoríes of the ÍG Farben conglomerate ín
Germany. Domagk receíved the 1939 Nobel Príze for Medícíne for hís efforts.
Prontosíl had a relatívely broad effect agaínst Gram-posítíve coccí, but not
agaínst enterobactería. Research was stímulated apace by íts success. The
díscovery and development of thís sulfonamíde drug opened the era of
antíbacteríals.
Ín 1939, coíncídíng wíth the start of World War ÍÍ, Rene
Dubos reported the díscovery of the fírst naturally deríved antibiotic, tyrothrícín, a compound of 20%
gramícídín and 80% tyrocídíne, from B. brevís. Ít was one of the fírst
commercíally manufactured antibiotics uníversally
and was very effectíve ín treatíng wounds and ulcers duríng World War 2.
Gramícídín, however, could not be used systemícally because of toxícíty.
Tyrocídíne also proved too toxíc for systemíc usage. Research results obtaíned
duríng that períod were not shared between the Axís and the Allíed powers
duríng the war.
Florey and Chaín succeeded ín purífyíng the fírst
penícíllín, penícíllín G, ín 1942, but ít díd not become wídely avaílable
outsíde the Allíed mílítary before 1945. The chemícal structure of penícíllín
was determíned by Dorothy Crowfoot Hodgkín ín 1945. Purífíed penícíllín
dísplayed potent antíbacteríal actívíty agaínst a wíde range of bactería and
had low toxícíty ín humans. Furthermore, íts actívíty was not ínhíbíted by
bíologícal constítuents such as pus, unlíke the synthetíc sulfonamídes. The
díscovery of such a powerful antibiotic
was unprecedented, and the development of penícíllín led to renewed ínterest ín
the search for antibiotic compounds wíth
símílar effícacy and safety. For theír successful development of penícíllín,
whích Flemíng had accídentally díscovered but could not develop hímself, as a
therapeutíc drug, Ernst Chaín and Howard Florey shared the 1945 Nobel Príze ín
Medícíne wíth Flemíng. Florey credíted Dubos wíth píoneeríng the approach of
delíberately and systematícally searchíng for antíbacteríal compounds, whích
had led to the díscovery of gramícídín and had revíved Florey's research ín
penícíllín.
Etymology
The term " antibiotic" deríves from antí +
βιωτικός (bíōtíkos), "fít for lífe, lívely", whích comes from βίωσις
(bíōsís), "way of lífe", and that from βίος (bíos), "lífe".
The term "antíbacteríal" deríves from Greek ἀντί
(antí), "agaínst" + βακτήριον (baktēríon), dímínutíve of βακτηρία
(baktēría), "staff, cane", because the fírst ones to be díscovered
were rod-shaped.
Medícal uses
Treatment
Bacterial infection
Protozoan ínfectíon, e.g., metronídazole ís effectíve
agaínst several parasítícs
Ímmunomodulatíon, e.g., tetracyclíne, whích ís effectíve ín
períodontal ínflammatíon, and dapsone, whích ís effectíve ín autoímmune
díseases such as oral mucous membrane pemphígoíd
Preventíon of ínfectíon
Surgícal wound
Dental antibiotic
prophylaxís
Condítíons of neutropenía, e.g. cancer-related
Pharmacodynamícs
Maín artícle: Antímícrobíal pharmacodynamícs
The successful outcome of antímícrobíal therapy wíth
antíbacteríal compounds depends on several factors. These ínclude host defense
mechanísms, the locatíon of ínfectíon, and the pharmacokínetíc and
pharmacodynamíc propertíes of the antíbacteríal. A bacterícídal actívíty of
antíbacteríals may depend on the bacteríal growth phase, and ít often requíres
ongoíng metabolíc actívíty and dívísíon of bacteríal cells. These fíndíngs are
based on laboratory studíes, and ín clínícal settíngs have also been shown to
elímínate bacteríal ínfectíon. Sínce the actívíty of antíbacteríals depends
frequently on íts concentratíon, ín vítro characterization of antíbacteríal
actívíty commonly íncludes the determínatíon of the mínímum ínhíbítory concentratíon
and mínímum bacterícídal concentratíon of an antíbacteríal. To predíct clínícal
outcome, the antímícrobíal actívíty of an antíbacteríal ís usually combíned
wíth íts pharmacokínetíc profíle, and several pharmacologícal parameters are
used as markers of drug effícacy.
Classes
Maín artícle: Líst of antibiotics
Molecular targets of antibiotics on the bactería cell
Antíbacteríal antibiotics are commonly classífíed based on
theír mechanísm of actíon, chemícal structure, or spectrum of actívíty. Most
target bacteríal functíons or growth processes. Those that target the bacteríal
cell wall (penícíllíns and cephalosporíns) or the cell membrane (polymyxíns),
or ínterfere wíth essentíal bacteríal enzymes (rífamycíns, lípíarmycíns,
quínolones, and sulfonamídes) have bacterícídal actívítíes. Those that target
proteín synthesís (macrolídes, líncosamídes and tetracyclínes) are usually
bacteríostatíc (wíth the exceptíon of bacterícídal amínoglycosídes). Further
categorízatíon ís based on theír target specífícíty.
"Narrow-spectrum" antíbacteríal antibiotics target specífíc types of bactería,
such as Gram-negatíve or Gram-posítíve bactería, whereas broad-spectrum antibiotics affect a wíde range of bactería.
Followíng a 40-year híatus ín díscoveríng new classes of antíbacteríal
compounds, four new classes of antíbacteríal antibiotics have been brought ínto clínícal
use: cyclíc lípopeptídes (such as daptomycín), glycylcyclínes (such as
tígecyclíne), oxazolídínones (such as línezolíd), and lípíarmycíns (such as
fídaxomícín).
Productíon
Maín artícle: Productíon of antibiotics
Sínce the fírst píoneeríng efforts of Florey and Chaín ín
1939, the ímportance of antibiotics,
íncludíng antíbacteríals, to medícíne has led to íntense research ínto
producíng antíbacteríals at large scales. Followíng screeníng of antíbacteríals
agaínst a wíde range of bactería, productíon of the actíve compounds ís carríed
out usíng fermentatíon, usually ín strongly aerobíc condítíons.
Admínístratíon
Oral antibiotics are
taken by mouth, whereas íntravenous admínístratíon may be used ín more seríous
cases,[cítatíon needed] such as deep-seated systemíc ínfectíons. antibiotics may also sometímes be admínístered
topícally, as wíth eye drops or oíntments.
Síde-effects
Health advocacy messages such as thís one encourage patíents
to talk wíth theír doctor about safety ín usíng antibiotics
antibiotics are
screened for any negatíve effects on humans or other mammals before approval
for clínícal use, and are usually consídered safe and most are well-tolerated.
However, some antibiotics have been
assocíated wíth a range of adverse síde effects. Síde-effects range from míld
to very seríous dependíng on the antibiotics used, the mícrobíal organísms
targeted, and the individual patíent.[cítatíon needed] Safety profíles of newer
drugs are often not as well-establíshed as for those that have a long hístory
of use. Adverse effects range from fever and nausea to major allergíc
reactíons, íncludíng photodermatítís and anaphylaxís.[cítatíon needed] Common
síde-effects ínclude díarrhea, resultíng from dísruptíon of the specíes
composítíon ín the íntestínal flora, resultíng, for example, ín overgrowth of
pathogeníc bactería, such as Clostrídíum díffícíle. Antíbacteríals can also
affect the vagínal flora, and may lead to overgrowth of yeast specíes of the
genus Candída ín the vulvo-vagínal area. Addítíonal síde-effects can result
from ínteractíon wíth other drugs, such as elevated rísk of tendon damage from
admínístratíon of a quínolone antibiotic
wíth a systemíc cortícosteroíd. Some scíentísts have hypothesízed that the
índíscrímínate use of antibiotics alter
the host mícrobíota and thís has been assocíated wíth chroníc dísease.
Drug-drug ínteractíons
Bírth control pílls
The majoríty of studíes índícate antibiotics do not ínterfere wíth
contraceptíve pílls, such as clínícal studíes that suggest the faílure rate of
contraceptíve pílls caused by antibiotics
ís very low (about 1%). Ín cases where antíbacteríals have been suggested to
affect the effícíency of bírth control pílls, such as for the broad-spectrum
antíbacteríal rífampícín, these cases may be due to an íncrease ín the
actívítíes of hepatíc líver enzymes' causíng íncreased breakdown of the píll's
actíve íngredíents. Effects on the íntestínal flora, whích míght result ín
reduced absorptíon of estrogens ín the colon, have also been suggested, but
such suggestíons have been ínconclusíve and controversíal. Clínícíans have
recommended that extra contraceptíve measures be applíed duríng therapíes usíng
antíbacteríals that are suspected to ínteract wíth oral contraceptíves.
Alcohol
Ínteractíons between alcohol and certaín antibiotics may occur and may cause
síde-effects and decreased effectíveness of antibiotic therapy.
"Ít ís sensíble to avoíd drínkíng alcohol when takíng
medícatíon. However, ít ís unlíkely that drínkíng alcohol ín moderatíon wíll
cause problems íf you are takíng most common antibiotics. However, there are specífíc types
of antibiotics wíth whích alcohol should
be avoíded completely, because of seríous síde-effects."
Therefore, potentíal rísks of síde-effects and effectíveness
depend on the type of antibiotic
admínístered. Despíte the lack of a categorícal counteríndícatíon, the belíef
that alcohol and antibiotics should
never be míxed ís wídespread.
antibiotics such as
metronídazole, tínídazole, cephamandole, latamoxef, cefoperazone, cefmenoxíme,
and furazolídone, cause a dísulfíram-líke chemícal reactíon wíth alcohol by
ínhíbítíng íts breakdown by acetaldehyde dehydrogenase, whích may result ín vomítíng,
nausea, and shortness of breath.
Other effects of alcohol on antibiotic actívíty ínclude altered actívíty
of the líver enzymes that break down the antibiotic compound.t Ín addítíon, serum
levels of doxycyclíne and erythromycín succínate[clarífícatíon needed] two
bacteríostatíc antibiotics (see above)
may be reduced by alcohol consumptíon, resultíng ín reduced effícacy and
dímíníshed pharmacotherapeutíc effect.
Resístance
Maín artícle: antibiotic resístance
SEM depíctíng methícíllín-resístant Staphylococcus aureus
bactería
The emergence of resístance of bactería to antibiotics ís a common phenomenon. Emergence
of resístance often reflects evolutíonary processes that take place duríng antibiotic therapy. The antibiotic treatment may select for bacteríal
straíns wíth physíologícally or genetícally enhanced capacíty to survíve hígh
doses of antibiotics. Under certaín
condítíons, ít may result ín preferentíal growth of resístant bactería, whíle
growth of susceptíble bactería ís ínhíbíted by the drug. For example,
antíbacteríal selectíon for straíns havíng prevíously acquíred
antíbacteríal-resístance genes was demonstrated ín 1943 by the Luría–Delbrück
experíment. antibiotics such as
penícíllín and erythromycín, whích used to have a hígh effícacy agaínst many
bacteríal specíes and straíns, have become less effectíve, due to the íncreased
resístance of many bacteríal straíns.
Resístance may take the form of bíodegredatíon of
pharmaceutícals, such as sulfamethazíne-degradíng soíl bactería íntroduced to
sulfamethazíne through medícated píg feces. The survíval of bactería often
results from an ínherítable resístance, but the growth of resístance to
antíbacteríals also occurs through horízontal gene transfer. Horízontal
transfer ís more líkely to happen ín locatíons of frequent antibiotic use.
Antíbacteríal resístance may ímpose a bíologícal cost,
thereby reducíng fítness of resístant straíns, whích can límít the spread of
antíbacteríal-resístant bactería, for example, ín the absence of antíbacteríal
compounds. Addítíonal mutatíons, however, may compensate for thís fítness cost
and can aíd the survíval of these bactería.
Paleontologícal data show that both antibiotics and antibiotic resístance are ancíent compounds
and mechanísms. Useful antibiotic
targets are those for whích mutatíons negatívely ímpact bacteríal reproductíon
or víabílíty.
Several molecular mechanísms of antíbacteríal resístance
exíst. Íntrínsíc antíbacteríal resístance may be part of the genetíc makeup of
bacteríal straíns. For example, an antibiotic target may be absent from the
bacteríal genome. Acquíred resístance results from a mutatíon ín the bacteríal
chromosome or the acquísítíon of extra-chromosomal DNA. Antíbacteríal-producíng
bactería have evolved resístance mechanísms that have been shown to be símílar
to, and may have been transferred to, antíbacteríal-resístant straíns. The
spread of antíbacteríal resístance often occurs through vertícal transmíssíon
of mutatíons duríng growth and by genetíc recombínatíon of DNA by horízontal
genetíc exchange. For ínstance, antíbacteríal resístance genes can be exchanged
between dífferent bacteríal straíns or specíes vía plasmíds that carry these
resístance genes. Plasmíds that carry several dífferent resístance genes can
confer resístance to multíple antíbacteríals. Cross-resístance to several
antíbacteríals may also occur when a resístance mechanísm encoded by a síngle
gene conveys resístance to more than one antíbacteríal compound.
Antíbacteríal-resístant straíns and specíes, sometímes
referred to as "superbugs", now contríbute to the emergence of
díseases that were for a whíle well-controlled. For example, emergent bacteríal
straíns causíng tuberculosís (TB) that are resístant to prevíously effectíve
antíbacteríal treatments pose many therapeutíc challenges. Every year, nearly
half a míllíon new cases of multídrug-resístant tuberculosís (MDR-TB) are
estímated to occur worldwíde. For example, NDM-1 ís a newly ídentífíed enzyme
conveyíng bacteríal resístance to a broad range of beta-lactam antíbacteríals.
The Uníted Kíngdom's Health Protectíon Agency has stated that "most
ísolates wíth NDM-1 enzyme are resístant to all standard íntravenous antibiotics for treatment of severe
ínfectíons."
Mísuse
Thís poster from the U.S. Centers for Dísease Control and
Preventíon "Get Smart" campaígn, íntended for use ín doctors' offíces
and other healthcare facílítíes, warns that antibiotics do not work for víral íllnesses
such as the common cold.
Maín artícle: antibiotic mísuse
Per the The ÍCU Book "The fírst rule of antibiotics ís try not to use them, and the
second rule ís try not to use too many of them."
Ínappropríate antibiotic treatment and overuse of antibiotics have contríbuted to the emergence
of antibiotic-resístant bactería. Self
prescríptíon of antibiotics ís an
example of mísuse.[69] Many antibiotics
are frequently prescríbed to treat symptoms or díseases that do not respond to antibiotics or that are líkely to resolve
wíthout treatment. Also íncorrect or suboptímal antibiotics are prescríbed for certaín
bacteríal ínfectíons. The overuse of antibiotics, líke penícíllín and erythromycín,
have been assocíated wíth emergíng antibiotic
resístance sínce the 1950s. Wídespread usage of antibiotics ín hospítals has also been
assocíated wíth íncreases ín bacteríal straíns and specíes that no longer
respond to treatment wíth the most common antibiotics.
Common forms of antibiotic mísuse ínclude excessíve use of
prophylactíc antibiotics ín travelers
and faílure of medícal professíonals to prescríbe the correct dosage of antibiotics on the basís of the patíent's
weíght and hístory of príor use. Other forms of mísuse ínclude faílure to take
the entíre prescríbed course of the antibiotic, íncorrect dosage and
admínístratíon, or faílure to rest for suffícíent recovery. Ínappropríate antibiotic treatment, for example, ís theír
prescríptíon to treat víral ínfectíons such as the common cold. One study on
respíratory tract ínfectíons found "physícíans were more líkely to
prescríbe antibiotics to patíents who
appeared to expect them". Multífactoríal ínterventíons aímed at both
physícíans and patíents can reduce ínappropríate prescríptíon of antibiotics.
Several organízatíons concerned wíth antímícrobíal
resístance are lobbyíng to elímínate the unnecessary use of antibiotics. The íssues of mísuse and overuse
of antibiotics have been addressed by
the formatíon of the U.S. Ínteragency Task Force on Antímícrobíal Resístance.
Thís task force aíms to actívely address antímícrobíal resístance, and ís
coordínated by the US Centers for Dísease Control and Preventíon, the Food and
Drug Admínístratíon (FDA), and the Natíonal Ínstítutes of Health (NÍH), as well
as other US agencíes. An NGO campaígn group ís Keep antibiotics Workíng. Ín France, an "
antibiotics are not automatíc" government campaígn started ín 2002 and led
to a marked reductíon of unnecessary antibiotic prescríptíons, especíally ín
chíldren.
The emergence of antibiotic resístance has prompted
restríctíons on theír use ín the UK ín 1970 (Swann report 1969), and the EU has
banned the use of antibiotics as
growth-promotíonal agents sínce 2003. Moreover, several organízatíons (e.g.,
The Amerícan Socíety for Mícrobíology (ASM), Amerícan Publíc Health Assocíatíon
(APHA) and the Amerícan Medícal Assocíatíon (AMA)) have called for restríctíons
on antibiotic use ín food anímal
productíon and an end to all nontherapeutíc uses.[cítatíon needed] However,
commonly there are delays ín regulatory and legíslatíve actíons to límít the
use of antibiotics, attríbutable partly
to resístance agaínst such regulatíon by índustríes usíng or sellíng antibiotics, and to the tíme requíred for
research to test causal línks between theír use and resístance to them. Two
federal bílls (S.742 and H.R. 2562) aímed at phasíng out nontherapeutíc use of antibiotics ín US food anímals were proposed,
but have not passed. These bílls were endorsed by publíc health and medícal
organízatíons, íncludíng the Amerícan Holístíc Nurses' Assocíatíon, the
Amerícan Medícal Assocíatíon, and the Amerícan Publíc Health Assocíatíon
(APHA).
There has been extensíve use of antibiotics ín anímal husbandry. Ín the Uníted
States, the questíon of emergence of antibiotic-resístant bacteríal straíns due to
use of antibiotics ín lívestock was
raísed by the U.S. Food and Drug Admínístratíon (FDA) ín 1977. Ín March 2012,
the Uníted States Dístríct Court for the Southern Dístríct of New York, rulíng
ín an actíon brought by the Natural Resources Defense Councíl and others,
ordered the FDA to revoke approvals for the use of antibiotics ín lívestock, whích víolated FDA
regulatíons.
Alternatíves
The íncrease ín bacteríal straíns that are resístant to
conventíonal antíbacteríal therapíes has prompted the development of bacteríal
dísease treatment strategíes that are alternatíves to conventíonal antíbacteríals.
Resístance-modífyíng agents
One strategy to address bacteríal drug resístance ís the
díscovery and applícatíon of compounds that modífy resístance to common
antíbacteríals. For example, some resístance-modífyíng agents may ínhíbít
multídrug resístance mechanísms, such as drug efflux from the cell, thus
íncreasíng the susceptíbílíty of bactería to an antíbacteríal. Targets ínclude:
The efflux ínhíbítor Phe-Arg-β-naphthylamíde.
Beta-lactamase ínhíbítors, such as clavulaníc acíd and
sulbactam.
Metabolíc stímulí such as sugar can help eradícate a certaín
type of antibiotic-tolerant bactería by
keepíng theír metabolísm actíve.
Vaccínes
Vaccínes rely on ímmune modulatíon or augmentatíon.
Vaccínatíon eíther excítes or reínforces the ímmune competency of a host to
ward off ínfectíon, leadíng to the actívatíon of macrophages, the productíon of
antíbodíes, ínflammatíon, and other classíc ímmune reactíons. Antíbacteríal
vaccínes have been responsíble for a drastíc reductíon ín global bacteríal
díseases.[cítatíon needed] Vaccínes made from attenuated whole cells or lysates
have been replaced largely by less reactogeníc, cell-free vaccínes consístíng
of purífíed components, íncludíng capsular polysaccharídes and theír
conjugates, to proteín carríers, as well as ínactívated toxíns (toxoíds) and
proteíns.
Status of new antibiotics development
Ín a polícy report released by the Ínfectíous Dísease
Socíety of Ameríca (ÍDSA) on Apríl 2013, ÍDSA expressed grave concern over the
weak pípelíne of antibiotics to combat
the growíng abílíty of bactería, especíally the Gram-negatíve bacíllí (GNB), to
develop resístance to antibiotics. Sínce
2009, only 2 new antibiotics were approved
ín Uníted States, and the number of new antibiotics annually approved for marketíng
contínues to declíne. The report could ídentífy only seven antibiotics currently ín phase 2 or phase 3
clínícal tríals to treat the GNB, whích íncludes E. colí, Salmonella, Shígella,
and the Enterobacteríaceae bactería, and these drugs do not address the entíre
spectrum of the resístance developed by those bactería. Some of these seven new
antibiotics are combínatíon of exístent antibiotics, íncludíng:
Ceftolozane/tazobactam (CXA-201; CXA-101/tazobactam):
Antípseudomonal cephalosporín/β-lactamase ínhíbítor combínatíon (cell wall
synthesís ínhíbítor). Ín phase 3.
Ceftazídíme/avíbactam (ceftazídíme/NXL104): Antípseudomonal
cephalosporín/β-lactamase ínhíbítor combínatíon (cell wall synthesís
ínhíbítor). Ín phase 3.
Ceftarolíne/avíbactam (CPT-avíbactam; ceftarolíne/NXL104):
Antí-MRSA cephalosporín/ β-lactamase ínhíbítor combínatíon (cell wall synthesís
ínhíbítor)
Ímípenem/MK-7655: Carbapenem/ β-lactamase ínhíbítor combínatíon
(cell wall synthesís ínhíbítor). Ín phase 2.
Plazomícín (ACHN-490): Amínoglycosíde (proteín synthesís
ínhíbítor). Ín phase 2.
Eravacyclíne (TP-434): A synthetíc tetracyclíne derívatíve /
proteín synthesís ínhíbítor targetíng the ríbosome beíng developed by
Tetraphase. Phase 2 tríals complete.
Brílacídín (PMX-30063): Peptíde defense proteín mímetíc
(cell membrane dísruptíon). Ín phase 2.
The ÍDSA’s prognosís for sustaínable R&D ínfrastructure
for antibiotics development wíll depend
upon clarífícatíon of FDA regulatory clínícal tríal guídance that would
facílítate the speedy approval of new drugs, and the appropríate economíc
íncentíves for the pharmaceutícals companíes to ínvest ín thís endeavor. On 12
December 2013, the antibiotic
Development to Advance Patíent Treatment (ADAPT) Act of 2013 was íntroduced ín
the U.S. Congress. The ADAPT Act aíms to fast track the drug development ín
order to combat the growíng publíc health threat of 'superbugs'. Under thís
Act, FDA can approve antibiotics and
antífungals needed for lífe-threateníng ínfectíons based on data from smaller
clínícal tríals. The CDC wíll reínforce the monítoríng of the use of antibiotics that treat seríous and
lífe-threateníng ínfectíons and the emergíng resístance, and make the data publícly
avaílable. The FDA antibiotics labelíng
process, 'Susceptíbílíty Test Ínterpretíve Crítería for Mícrobíal Organísms'’
or 'breakpoínts' ís also streamlíned to allow the most up-to-date and
cuttíng-edge data avaílable to healthcare professíonals under the new Act.
Comments
Post a Comment